Introduction to Operations Research, Volume 1CD-ROM contains: Student version of MPL Modeling System and its solver CPLEX -- MPL tutorial -- Examples from the text modeled in MPL -- Examples from the text modeled in LINGO/LINDO -- Tutorial software -- Excel add-ins: TreePlan, SensIt, RiskSim, and Premium Solver -- Excel spreadsheet formulations and templates. |
From inside the book
Results 1-3 of 54
Page 117
... lution was obtained before by augmenting the CPF solution ( 0 , 6 ) . However , another way to obtain this same ... lutions also are said to be adjacent . Here is an easy way to tell when two BF solutions are adjacent . Two BF solutions ...
... lution was obtained before by augmenting the CPF solution ( 0 , 6 ) . However , another way to obtain this same ... lutions also are said to be adjacent . Here is an easy way to tell when two BF solutions are adjacent . Two BF solutions ...
Page 242
... lutions . Furthermore , by using the augmented form of the problem , we can express these corner - point solutions as ... lution ( y1 , y2 , Ym ) yields a basic solution ( y1 , Y2 , Ym , Z1 C1 , Z2 C2 , Zn - cn ) by using this expression ...
... lutions . Furthermore , by using the augmented form of the problem , we can express these corner - point solutions as ... lution ( y1 , y2 , Ym ) yields a basic solution ( y1 , Y2 , Ym , Z1 C1 , Z2 C2 , Zn - cn ) by using this expression ...
Page 342
... lution for the following problem as a function of 0 , for 0 ≤ 0≤ 20 . Maximize Z ( 0 ) = ( 20 + 40 ) x1 + ( 30 − 30 ) x2 + 5x3 , subject to and 3x1 + 3x2 + x3 ≤30 8x1 + 6x2 + 4x3 ≤75 6x1 + x2 + x3 ≤ 45 x2 ≥ 0 , X3 ≥ 0 . 1 ( a ) ...
... lution for the following problem as a function of 0 , for 0 ≤ 0≤ 20 . Maximize Z ( 0 ) = ( 20 + 40 ) x1 + ( 30 − 30 ) x2 + 5x3 , subject to and 3x1 + 3x2 + x3 ≤30 8x1 + 6x2 + 4x3 ≤75 6x1 + x2 + x3 ≤ 45 x2 ≥ 0 , X3 ≥ 0 . 1 ( a ) ...
Other editions - View all
Introduction to Operations Research Frederick S. Hillier,Gerald J. Lieberman No preview available - 2001 |
Common terms and phrases
activity algebraic algorithm allowable range artificial variables b₂ basic solution c₁ c₂ changes coefficients column Consider the following cost CPF solution CPLEX decision variables described dual problem dynamic programming entering basic variable example feasible region feasible solutions final simplex tableau final tableau following problem formulation functional constraints Gaussian elimination given goal goal programming graphical identify increase initial BF solution integer interior-point iteration leaving basic variable linear programming model linear programming problem LINGO LP relaxation lution Maximize Z maximum flow problem Minimize needed node nonbasic variables nonnegativity constraints objective function obtained optimal solution optimality test parameters path plant presented in Sec primal problem Prob procedure range to stay right-hand sides sensitivity analysis shadow prices shown simplex method slack variables solve the model Solver spreadsheet step subproblem surplus variables Table tion values weeks Wyndor Glass x₁ zero