Network Models and Optimization: Multiobjective Genetic Algorithm ApproachNetwork models are critical tools in business, management, science and industry. Network Models and Optimization: Multiobjective Genetic Algorithm Approach presents an insightful, comprehensive, and up-to-date treatment of multiple objective genetic algorithms to network optimization problems in many disciplines, such as engineering, computer science, operations research, transportation, telecommunication, and manufacturing. Network Models and Optimization: Multiobjective Genetic Algorithm Approach extensively covers algorithms and applications, including shortest path problems, minimum cost flow problems, maximum flow problems, minimum spanning tree problems, travelling salesman and postman problems, location-allocation problems, project scheduling problems, multistage-based scheduling problems, logistics network problems, communication network problem, and network models in assembly line balancing problems, and airline fleet assignment problems. Network Models and Optimization: Multiobjective Genetic Algorithm Approach can be used both as a student textbook and as a professional reference for practitioners in many disciplines who use network optimization methods to model and solve problems. |
From inside the book
Results 1-5 of 70
Heuristic search strategies use additional information to guide search move along with the best search directions. There are twoimportant issues insearchstrategies: exploiting the bestsolution and exploring the search space [14].
The methods are applied to a single point in the search space. The point is then improved along the deepest descending direction gradually through iterations as shown in Fig. 1.2. This point-to-point approach embraces the danger of ...
This issue has been investigated from many aspects, such as mapping characters from a genotype space to a phenotype space when individuals are decoded into solutions, and the metamorphosis properties when individuals are manipulated by ...
Then the search will be performed in the space of solutions and the strategy parameters together. In this way a suitable adjustment and diversity of mutation parameters should be provided under arbitrary circumstances.
Solution space Encoding space illegal feasible infeasible The infeasibility of chromosomes originates from the nature of the constrained optimization problem. Whatever methods are used, conventional ones or genetic algorithms, ...
What people are saying - Write a review
Contents
1 | |
49 | |
Logistics Network Models | 135 |
Communication Network Models | 229 |
Advanced Planning and Scheduling Models | 297 |
Project Scheduling Models | 419 |
Assembly Line Balancing Models | 477 |
Tasks Scheduling Models | 551 |
References | 604 |
Index | 687 |
Other editions - View all
Network Models and Optimization: Multiobjective Genetic Algorithm Approach Mitsuo Gen,Runwei Cheng,Lin Lin No preview available - 2008 |
Network Models and Optimization: Multiobjective Genetic Algorithm Approach Mitsuo Gen,Runwei Cheng,Lin Lin No preview available - 2010 |