Network Models and Optimization: Multiobjective Genetic Algorithm ApproachNetwork models are critical tools in business, management, science and industry. Network Models and Optimization: Multiobjective Genetic Algorithm Approach presents an insightful, comprehensive, and up-to-date treatment of multiple objective genetic algorithms to network optimization problems in many disciplines, such as engineering, computer science, operations research, transportation, telecommunication, and manufacturing. Network Models and Optimization: Multiobjective Genetic Algorithm Approach extensively covers algorithms and applications, including shortest path problems, minimum cost flow problems, maximum flow problems, minimum spanning tree problems, travelling salesman and postman problems, location-allocation problems, project scheduling problems, multistage-based scheduling problems, logistics network problems, communication network problem, and network models in assembly line balancing problems, and airline fleet assignment problems. Network Models and Optimization: Multiobjective Genetic Algorithm Approach can be used both as a student textbook and as a professional reference for practitioners in many disciplines who use network optimization methods to model and solve problems. |
From inside the book
Results 1-5 of 91
Hillclimbing is an example of a strategy which exploits the best solution for possible improvement, ignoring the exploration of the search space. Random search is an example of a strategy which explores the search space, ignoring the ...
The point is then improved along the deepest descending direction gradually through iterations as shown in Fig. 1.2. This point-to-point approach embraces the danger of failing in local optima. GA performs a multi-directional search by ...
In essence, the operators perform a random search, and cannot guarantee to yield an improved offspring. There are three common genetic operators: crossover, mutation and selection. 1.2.4.1 Crossover Crossover is the main genetic ...
For example, for many constrained optimization problems where the initial population consists of infeasible chromosomes only, it might be essential to improve them. Moreover, quite often the system can reach the optimum easier if it is ...
By letting some of the individuals' experiences be passed along to future individuals, we can improve the GA's ability to focus on the most promising areas. Following a more Lamarckian approach, firsta traditional hill-climbing routine ...
What people are saying - Write a review
Contents
1 | |
49 | |
Logistics Network Models | 135 |
Communication Network Models | 229 |
Advanced Planning and Scheduling Models | 297 |
Project Scheduling Models | 419 |
Assembly Line Balancing Models | 477 |
Tasks Scheduling Models | 551 |
References | 604 |
Index | 687 |
Other editions - View all
Network Models and Optimization: Multiobjective Genetic Algorithm Approach Mitsuo Gen,Runwei Cheng,Lin Lin No preview available - 2008 |
Network Models and Optimization: Multiobjective Genetic Algorithm Approach Mitsuo Gen,Runwei Cheng,Lin Lin No preview available - 2010 |