Causal Learning: Psychology, Philosophy, and ComputationUnderstanding causal structure is a central task of human cognition. Causal learning underpins the development of our concepts and categories, our intuitive theories, and our capacities for planning, imagination and inference. During the last few years, there has been an interdisciplinary revolution in our understanding of learning and reasoning: Researchers in philosophy, psychology, and computation have discovered new mechanisms for learning the causal structure of the world. This new work provides a rigorous, formal basis for theory theories of concepts and cognitive development, and moreover, the causal learning mechanisms it has uncovered go dramatically beyond the traditional mechanisms of both nativist theories, such as modularity theories, and empiricist ones, such as association or connectionism. |
From inside the book
Results 1-5 of 36
Page vii
... Observation, Imitation 37 Andrew N. Meltzoff 3 Detecting Causal Structure: The Role of Interventions in Infants' Understanding of Psychological and Physical Causal Relations 48 Jessica A. Sommerville 4 An Interventionist Approach to ...
... Observation, Imitation 37 Andrew N. Meltzoff 3 Detecting Causal Structure: The Role of Interventions in Infants' Understanding of Psychological and Physical Causal Relations 48 Jessica A. Sommerville 4 An Interventionist Approach to ...
Page ix
... UK Andrew N. Meltzoff Institute for Learning and Brain Sciences University of Washington Seattle, WA 98195 Bob Rehder Department of Psychology New York University New York, NY 10003 Thomas Richardson Department of Statistics ...
... UK Andrew N. Meltzoff Institute for Learning and Brain Sciences University of Washington Seattle, WA 98195 Bob Rehder Department of Psychology New York University New York, NY 10003 Thomas Richardson Department of Statistics ...
Page 2
Actually, I think Gopnik puts it quite well in her book about theory formation (Gopnik & Meltzoff, 1997) (she does tend to let her conclusions outstrip her data, but she sure has ...
Actually, I think Gopnik puts it quite well in her book about theory formation (Gopnik & Meltzoff, 1997) (she does tend to let her conclusions outstrip her data, but she sure has ...
Page 8
Andrew Meltzoff will show you something like the reverse: how babies take information they only observe and turn it into actions of their own. Sprogs do all sorts of other things: make good interventions, discriminate confounded and ...
Andrew Meltzoff will show you something like the reverse: how babies take information they only observe and turn it into actions of their own. Sprogs do all sorts of other things: make good interventions, discriminate confounded and ...
Page 9
Specifically, infants seem to interpret human, but not mechanical, action as goal directed and self-initiated (Meltzoff, 1995; A. L. Woodward, 1998; A. L. Woodward, Phillips, & Spelke, 1993). Thus, for instance, babies expect physical ...
Specifically, infants seem to interpret human, but not mechanical, action as goal directed and self-initiated (Meltzoff, 1995; A. L. Woodward, 1998; A. L. Woodward, Phillips, & Spelke, 1993). Thus, for instance, babies expect physical ...
What people are saying - Write a review
We haven't found any reviews in the usual places.
Other editions - View all
Causal Learning: Psychology, Philosophy, and Computation Alison Gopnik,Laura Schulz Limited preview - 2007 |
Causal Learning: Psychology, Philosophy, and Computation Alison Gopnik,Laura Schulz Limited preview - 2007 |
Causal Learning: Psychology, Philosophy, and Computation Alison Gopnik,Laura Schulz Limited preview - 2007 |
Common terms and phrases
actions adults algorithms Bayesian inference Bayesian networks behavior beliefs birth control pills blicket detector Cambridge causal Bayes nets causal chain causal inference causal knowledge causal learning causal Markov condition causal model causal networks causal power causal reasoning causal relations causal relationships causal strength causal structure causal system chapter Cognitive Science common cause computational condition conditional independence conditional probabilities correlation counterfactuals covariation cues deterministic Development Developmental Psychology domain effect evidence example experiments explanations Figure framework Fuel Intake Glymour Gopnik graph schema graphical models Hagmayer human independent infants intervention interventionist intuitive theories Lagnado Laplace learners manipulated Markov Markov random field mechanism Meltzoff object observed outcome participants people’s Piston predictions prior probabilistic probabilistic graphical models probability distribution psychological question Reichenbach represent representation Schulz Sloman Sobel specific statistical stickball Tenenbaum thrombosis tion trials underlying understanding unobserved cause variables Waldmann Wellman Woodward